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Abstract 
Pair distribution function (PDF) analysis of neutron 
or X-ray powder diffraction data is a useful technique 
for analysis of short-range structure in both amor- 
phous and crystalline materials. Errors in PDF 
determinations may arise from several sources: termi- 
nation of the Fourier transform, lack of instrument 
resolution, counting statistics and inaccurate correc- 
tions for experimental artifacts. Estimates of the 
amount of error from termination and instrument 
resolution are computed using a model structure. A 
general method for estimating the expected contribu- 
tion of statistical error to the PDF is introduced for 
the first time. The effect of termination varies with 
the type of material and with the amplitude of lattice 
vibrations but, in general, termination with Q > 30 
produces minimal errors. Broadening of the diffrac- 
tion pattern produces negligible effect for conven- 
tional instrumentation. With moderate data-collec- 
tion times, the statistical errors can be reduced to 
reasonable levels. Pulsed-neutron diffraction can pro- 
vide accurate and precise PDF measurements, as is 
demonstrated in this work by the agreement between 
model and experimental results for polycrystalline 
aluminium. 

Introduction 
The local atomic structure of materials may be 
examined without invoking crystallographic sym- 
metry using pair distribution function (PDF) analysis. 
The PDF, which can be determined by direct Fourier 
transformation of neutron powder diffraction data, 
shows the probability of finding any two atoms at a 
given interatomic distance (Warren, 1969; Klug & 
Alexander, 1968). A PDF may also be determined 
with X-rays, as will be discussed later, but the analysis 
is less straightforward. 

The primary application of PDF analysis has been 
in structural studies of amorphous and liquid 
materials, which lack lattice periodicity (Cargill, 
1975; Wagner, 1972). For these non-crystalline 
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materials, published PDFs generally have broad 
features with little usable information beyond the 
second or third coordination sphere and often exhibit 
large spurious oscillations due to experimental errors. 
This has led many people to assume incorrectly that 
PDF analysis provides useful information regarding 
only very short range interatomic distances and is a 
method of last resort, to be avoided whenever lattice 
symmetry can be assumed. In reality, the broad PDF 
features seen in amorphous materials are due to the 
wider range of bond distances and angles in these 
materials. In more ordered solids, the PDF has much 
more structure and can provide information on the 
medium-range atomic structure. Furthermore, with 
modern instrumentation and with careful data reduc- 
tion, the spurious oscillations can be reduced to 
minimal levels. As will be presented later, the 
accuracy and precision to which a PDF may be deter- 
mined is demonstrated in Fig. 1, where an experi- 
mentally determined PDF for polycrystalline 
aluminium powder at 50 K is compared to the result 
expected from the crystal structure. 

It is well known that one important prerequisite 
for accurate PDF determination is the measurement 
of the diffractogram with large momentum transfer, 
which requires a high-energy (short-wavelength) 
probe. While this cannot be obtained from standard 
laboratory diffraction instruments, it is possible to 
determine accurate and precise pair distribution func- 
tions using data from modern high-energy high- 
intensity synchrotron diffractometers and particularly 
from neutron spallation sources and time-of-flight 
detection (for example, see Carpenter & Yelon, 1986). 
Customized laboratory instrumentation using a tung- 
sten Bremsstrahlung source and energy-dispersive 
detection has also been used with success for PDF 
analysis (Egami, 1978). 

Accurate PDF measurements have been used for 
crystalline materials to differentiate correlated atomic 
displacements from random displacements, structural 
details that are easily missed by standard crystallo- 
graphic analysis, such as Patterson and direct- 
methods structure determination and single-crystal 
and Rietveld refinement techniques (Dmowski et al., 
1988; Toby, Egami, Jorgensen & Subramanian, 1990). 
For crystallographic analysis, the assumption of long- 
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range translational symmetry superimposes the con- 
tents of each unit cell, so that each atomic position 
in the crystal structure reflects an average. All crystals 
have deviations from ideal lattice symmetry: atoms 
have random dynamic displacements due to thermal 
and zero-point vibration but, in addition, some crys- 
tals exhibit correlated dynamic displacements or local 
static atomic deviations from the ideal symmetry. 
Unless the correlation length of such displacements 
is sufficiently large (> 100 A) so that the local struc- 
ture is reflected in the long-range symmetry of the 
material, random and correlated atomic displace- 
ments may be distinguished only through examin- 
ation of diffuse scattering. Crystallographic analysis, 
which uses only Bragg scattering, must treat such 
displacements as random - using a model with either 
disordered sites or with anomalously large thermal 
vibration amplitudes, thus not providing an accurate 
picture. 
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Fig. 1. An observed (solid line) and computed (dotted line) pair 
distribution function for polycrystalline Ai powder at 50 K plot- 
ted over the ranges (a) 0-20 A and (b) 20-40 ,~. The lower box 
shows the deviation between the observed and calculated results 
(solid line) and + 1 tr where o" is the standard deviation estimated 
from counting statistics (dashed line). The lower-box contents 
are magnified 5:1 for (a) and 1.5:1 for (b). 

In contrast, the PDF is computed using both diffuse 
and Bragg scattering and does reflect short-range 
correlations in atomic positions. Thus the PDF can 
discriminate effectively between short-range order 
and random displacements, at the cost of giving little 
information about the long-range structure of a 
material. Thus the two techniques are highly com- 
plementary. Fortunately both can be used for analysis 
of the same diffraction data. 

An example of the utility of PDF measurements is 
given by the study of the T12Ba2CaCu208 supercon- 
ductor, where PDF measurements have demonstrated 
TI-O displacements having only short-range order 
(Dmowski et al., 1988); crystal structure analysis was 
forced to model the T1-O plane with a disordered 
structure (Cox, Torardi, Subramanian, Gopalakrish- 
nan & Sleight, 1988). More careful crystallographic 
analysis coupled with electron microscopy also 
confirmed these displacements (Hewat, Hewat, 
Brynestad, Mook & Specht, 1988). Also, PDF 
determinations showed unmistakable indications of 
a change in the short-range structure with the onset 
of superconductivity, while Rietveld analysis of the 
same data showed no change in the average structure 
(Toby et al., 1989, 1990). 

This new goal of making qualitative structural 
measurements from PDF measurements requires a 
more detailed understanding of the sources of error 
in PDF measurements. In this paper we discuss both 
systematic and statistical error sources for PDF 
measurements and estimate their relative magnitudes. 

1 .  B a c k g r o u n d  

In this section we present the definitions and notation 
used in PDF analysis, following the descriptions of 
Lovesey (1984) and Warren (1969). A comparison to 
crystallographic formulations will also be given. 
Equations specific to neutron diffraction will be used 
but, where appropriate, extensions or approximations 
for X-ray diffraction will be introduced. 

1.1. Diffraction intensity and the structure factor 

The scattering of a probe particle is characterized 
by the momentum-transfer vector Q, Q -- k I -  ki and 
energy transfer to - - to i -  tos, where ki and k s are the 
incident and final momentum vectors and where toi 
and tol are the energies of the particle before and 
after scattering. In the general case, the scattering 
intensity from a collection of atoms may be written as 

( 3 O  

l (Q ,  to)= ~ exp[-i to 'r](b)2,~(Q, 'r)d'r  (1) 
- - o o  

where the total intermediate scattering function, 
5~(Q, z), describes interference between scattered 
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waves with time lag r; 

# (Q,  r )=((b)2N)  -' 

x ( ( ~ b j b k e x p { i Q ' [ r j ( t ) - r k ( t + r ) ] } > > .  
j,k 

(2) 
In these equations, rj(t) is the position of the j th  
atom at time t, bj is the scattering length for the j th  
atom and the summation is performed for all pairs 
of atoms in the sample. The double angle brackets 
(((. . .))) indicate a time average and the single 
brackets ( ( . . . ) )  indicate a compositional average. 
Note that the scattering intensity is normalized to 
unit solid angle of detection and to the number of 
scatterers and has the same units as b 2 (usually barns, 
1 ba rn=  10-28m2). Equation (1) neglects contribu- 
tions from multiple scattering and attenuation due to 
absorption, which depend on the experiment 
geometry. 

Two limiting cases may be considered. In the first 
case, intensity detection is performed without energy 
discrimination but with fixed Q, so that all values of 
to are sampled. The resulting intensity,/tot(Q), is the 
integral of I (Q,  to) for all to, 

oO CO 

/tot(Q) = ~ ~ exp [-itor](b)2#(Q, r) dr dto 
- - c o  - - c o  

c o  

= [. 8(r) (b)2#(Q, r) dr  
- - 00  

= (b)25~(Q, 0) 

= N-~ Y. bjbk((exp{iQ'[rj(t)-rk(t)]})) .  (3) 
j,k 

Thus, this energy-integrated intensity function is 
indicative of the instantaneous correlations between 
atomic positions. It should be noted that for detection 
at fixed 20, Q will vary with to since Bragg's law, 
Q = [Q = 4rr(sin 0)/h,  is true only for elastic scatter- 
ing. Thus, in practice, data collected without energy 
discrimination will not directly measure/tot(Q) since 
Q is not constant. The Placzek approximation is cus- 
tomarily applied to correct for the shift in Q with to 
(Placzek, 1952). 

In the second case, energy discrimination is used 
to restrict the measurement to elastic scattering (to = 0 
and kj = [ky ). With the assumption of ideal energy 
analysis, the elastic scattering intensity, /el(Q), is 
given by 

Ie~(Q) = 7 8(to)I(Q,  to) dto 
- -CO 

= 7 (b)2#(Q, r) d r  (4) 
- - ¢ O  

where the delta function represents the energy analy- 
sis function. In practice, the measured intensity 

includes inelastic scattering intensity, with small [to[, 
along with the elastic scattering (to =0) ,  but it is 
possible to estimate and correct for the contribution 
of this inelastic intensity. The integration in (4) 
includes all values of z, so /el(Q) is independent of 
any time-dependent correlations in atomic positions 
and thus the scattering intensity may be considered 
indicative of what we will refer to as the time-indepen- 
dent structure. Further simplification is possible using 
rj(t) = uj +r j ( t ) ,  where uj = ((rj(t))) and by noting the 
independence of the exponential terms 

/el(Q) = N -~ Y'. BjBk exp [ i Q .  (rj--rk)] 
j,k 

x ((exp [ iQ " ui( t)])) 

× ((exp [ - i Q .  uk(t)])). (5) 

Thermal and zero-point motion decreases the scat- 
tering intensity with increasing Q. The Debye-Waller 
model assumes vibrational motion to be uncorrelated 
and approximates the intensity loss as 

exp [-Q2(((u2o, i)) +((u2O, k)))/2], 
where uoa is the component of the vibrational motion 
of uj in the direction Q. 

For powder diffraction, a sample composed of a 
large number of randomly oriented crystallites 
effectively averages the measurement over all orienta- 
tions of Q, yielding I(Q, to), the powder-averaged 
scattering intensity. For later use, it will be convenient 
to define the powder-averaged structure factor, S(Q),  
which has related definitions for each of the above 
two cases, 

Stot(Q)=[Itot(Q)/(b)2]-[((b2)-(b)2)/(b) 2] (6) 

and 

S~,(Q) = [ l(  Q)/(b) 2] -[((b2)-(b)2)/(b)2] 

x exp (-((u20))Q 2) (7) 

where ((u~)) is related to the Debye parameter, B, by 
B = 8zr2((u~)). Note that the definition of the structure 
factor used here differs from the definition for the 
structure factor, Fhk~, used in crystallography, as will 
be explored further in § 1.4. 

For X-rays, scattering factors bj are no longer con- 
stant but vary with Q and are customarily written as 
fj(Q), with units of electrons. Except for very unusual 
experiments, X-ray energy resolution does not allow 
separation of elastic from phonon-mediated inelastic 
scattering, so X-ray scattering represents the instan- 
taneous structure, determined by/tot.  

1.2. Experimental determination of  the structure factor 

Experimentally, it is not possible to measure I (Q)  
directly and a number of corrections must be applied 
to the experimental measurements to correct for 
absorption, polarization, multiple scattering and 
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either Placzek or inelastic scattering. In addition, 
corrections are usually required for instrument back- 
ground and scattering from the sample mounting or 
container. If an energy-dispersive instrument is used, 
it is also necessary to normalize to the incident source 
spectrum. 

For our S(Q) determinations from time-of-flight 
neutron diffraction data, three independent diffrac- 
tograms are collected for (1) the sample, which 
includes scattering from the sample container and 
instrument background; (2) an empty sample con- 
tainer, which also includes the instrument back- 
ground; (3) the instrument background. In addition, 
scattering from a vanadium reference standard is used 
to calibrate the incident-beam monitor and is collec- 
ted along with each diffractogram to measure the 
incident spectrum. From these measurements the 
method of Price (undated) is used to compute S(Q) 
using 

(,s(O) ,,,(o) 
S ( Q I = C I ( Q I [ a ' \ M - ~ )  M - - ~ ) ]  

(,c(o) 
-a2  Mc(Q) M - - ~ ) ]  +C2(Q) (8) 

where /~, Ic and Ib are the sample, container and 
background intensity measurements, respectively, 
M(Q)  indicates the incident spectrum correction 
computed from the monitor measurement and scaled 
by the total neutron flux for the measurement, al and 
a2 are absorption corrections for the sample and 
container, respectively, and C1 (Q) and C2(Q) contain 
sample- and instrument-dependent scaling factors 
and corrections for multiple and Placzek scattering 
(Placzek, 1952). The experimentally obtained S(Q) 
for polycrystalline aluminium, used to generate Fig. 
1, is shown in Fig. 2. 

O 

3 0  

2 0  

1 0  . 

0 "  
. . . .  t . . . .  i 

0 

• . , , . . . .  L . . . .  i . . . .  i . . . .  i . . . .  

. . . .  i . . . .  i . . . .  ~ . . . .  

"0 20 50 
Q . ~ - I  

Fig. 2. The observed S(Q) for polycrystailine A1 powder at 50 K 
used to obtain Fig. 1, collected in 2 h using the SEPD time-of- 
flight diffractometer at the Argonne Intense Pulsed Neutron 
Source. 

1.3. The pair distribution function 

The pair distribution or pair density function 
(PDF), p(r),  for neutron diffraction is defined for the 
instantaneous structure r(t) by 

Ptot(r)= N -~ ~, (bjbk/(b)2)((~{r-[rj(t)-rk(t)]})) • 
j ~ k  

(9) 

The PDF may be obtained from S(Q) using (3), 

ptot(r)- p0 = (27r) -3 ~ [Stot(Q)- 1] exp ( - i Q .  r) OQ 
(10) 

or in the powder-averaged case 

Ptot(r)-po=(27r2r) -] ~ Q[Sto t (Q)- l ]s in  QrdQ. 
(11) 

Similarly, for the elastic scattering case it is also 
possible to define a time-independent PDF, 

pel(r) = S - !  ~ (((bjbk/(b)E)~{r-[rj(t)-rk(t+r)]})).  
j ~ k  

(12) 

This PDF can be related to the elastic S(Q) using (4), 

pel(r) - P0-~ (217") -3 ~ [ sel(Q) - exp (-((u~)) Q2)] 

xexp ( - i Q - r )  dQ. (13) 

However, this equation is approximate due to the 
assumption of the Debye-Waller model. With the 
powder-averaged Sel(Q), 

pel(r) -- po = ( 2"n'E r) -] ~ Q[ Se~( Q ) - exp (-((u~))Q2)] 

x(sin Qr) dQ (14) 

is obtained. Note that at very small r values both 
PDFs must be zero, since there is a lower limit for 
interatomic distances due to interatomic repulsions. 
At large r the PDF approaches the average value po, 
because correlation in atomic positions becomes, for 
both crystalline and amorphous materials, decreas- 
ingly discernible for a coordination sphere with 
increasingly large radius. 

The radial distribution function, RDF, is used with 
different meanings in the literature. While it is some- 
times used interchangeably with the PDF, we define 
the RDF to be 4zrr2p(r) (Cargill, 1975). Note that 
the number of atoms in a coordination shell with radii 
rmi n to r m a  x is defined by 

r m a x  

4"n'rEp(r) dr. 
r m i n  

Historically, the PDF has been used to characterize 
only near-neighbor distances but, for many materials, 
the PDF shows sufficient detail that it may be used 
for more general structural determination. While the 
PDF is likely to exhibit some overlap of peaks, com- 
parison may still be made to a model PDF in a manner 
analogous to Rietveld analysis, provided the com- 
parison is made over a wide range in r. We define an 
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agreement factor, A, to measure the discrepancies 
between an experimental and a model PDF over a 
range in r, rmi n to r . . . .  as 

rmax 

A2=po2(rmax-rmin) -l ~ [Pobs(r)-Pmodet(r)] 2 dr. 
rmin 

(15) 

For the case where both functions have been evalu- 
ated at n points spaced equally in r, the PDF agree- 
ment factor can be written as 

A2=(nP~) -' L [Pobs(r,)--Pmoae,(r,)] 2. (16) 
i =1  

For X-ray diffraction, a PDF may be defined 
analogously to (9) using the Warren-Krutter- 
Morningstar approximation (Warren, Krutter & 
Morningstar, 1936), where the atomic scattering fac- 
tor fj(Q) is approximated as bjfavg(Q), where bj is a 
constant approximately equal to the number of elec- 
trons in element j and fdvg(Q) is the average normal- 
ized Q dependence for all elements in the material. 
The Fourier transform relation of (11) then becomes 
approximate. However, since the scaled Q depen- 
dence off j(Q) for different elements are comparable, 
the approximation is reasonably good. 

1.4. Comparison to crystallographic notation 

The momentum transfer vector, Q, is usually 
expressed in crystallographic terms using general 
indices hkl to indicate a Bragg reflection, where Q = 
21r(ha*+kb*+lc*) .  For an ideal crystal, S(Q)  can 
be expressed in terms of the crystallographic structure 
factor, Fhkt, with hkl equivalent to Q, 

f S(Q) d Q -  87r---3 1 _~1 F2hk ' (17) 
Vc nc (b 2) 

~vo 

where vc is the unit-cell volume, n~ is the number of 
atoms in the unit cell, 6VQ is a small volume in 
reciprocal space surrounding reflection hkl. The cus- 
tomary definition of the crystallographic structure 
factor, Fhkl, is 

n¢ 

Fhkl = Y. p ( x , y , z )  exp[27ri (hxj+kyj+lz j )]  (18) 
j = l  

where p(x,  y, z) represents the probability of finding 
a unit scatterer at position (x, y, z). In the Debye- 
Waller model, it is assumed that each atom vibrates 
around a fixed position, (x;, yj, zj), with amplitude 
proportional to B; (isotropic vibration) or with a 
component Bo.; in the direction of Q (anisotropic 
vibration), where Bo.; is related to the mean-square 
displacement in direction Q by Bou = 87r2((u~u)). The 

crystallographic structure factor may then be written 
?1 c 

Fhk, = Y~ bj exp (-BjQ2/167r 2) 
j= l  

x e x p [ - 2 7ri ( hxj ÷ kyj + lzj ) ] . (19) 

For X-rays, again the substitution fj(Q) is made for 
b i and the unit scatterer is an electron. 

Note that the total structure factor, S(Q), is defined 
per unit volume in reciprocal space, while the crys- 
tallographic structure factor Fhkt is the integral of the 
Bragg peak at hkl. Thus, when determining the crys- 
tallographic structure factor, it is necessary to apply 
a Lorentz correction (also referred to as the 
geometrical part of the Lorentz-polarization correc- 
tion) to the observed intensities to correct for the 
volume of reciprocal space sampled in the measure- 
ment. However, this correction is not needed for 
determination of the PDF. 

For the powder-averaged structure factor, reflec- 
tions will overlap, since Q can be equal or nearly 
equal for different values of hkl, so 

Q + ~ Q  

S(Q)=(27r2/Vc)(nc(b2)Q26Q)- l  ~ 2 Fhkt (20) 
Q 

where the sum is over all reflections with momentum 
transfer between Q and Q + 6Q. The factor Q26Q in 
this equation is the aforementioned Lorentz factor 
evaluated in Q. 

For crystallographic error analysis, discrepancies 
between observed and calculated F values are repor- 
ted using different formulations of weighted or 
unweighted residuals, commonly referred to as the R 
factor. These expressions are analogous to the formu- 
lation used for the PDF agreement factor [(8)]. 
However, it should be noted that the crystallographic 
R factor gives greatest weight to the data at low Q, 
where diffraction intensities are largest. This is in 
contrast to the PDF agreement factor, which gives 
most weight to the high-Q data that are most sig- 
nificant for PDF computation. Thus, the crystallo- 
graphic R factor stresses agreement in long-range 
order, while the PDF agreement factor stresses agree- 
ment in short-range order. 

1.5. Modeling o f  pair distribution functions 

The PDF for a collection of atoms may be com- 
puted by counting the interatomic distances between 
every possible pair of atoms, weighted by bj for each 
atom. To incorporate the broadening effects of ther- 
mal motion, two different approaches are commonly 
used: either a model with a large number of atoms 
is used and each atom is given random displacements, 
or the PDF from a smaller model is computed and 
is then convoluted with a Gaussian broadening 
function, 

o"(217") -1/2 exp (--Ar2/2cr 2) (21) 
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where 

.2 \ \ ' i l l2  (B,,j+Br, k)il2/(8il2"n ") o- = (<(,~ ~...k> + <<... . ,<,,  = 
u 2 and ((,,s)) and B,j are defined as before but are the 

components in the direction rj - rk. This latter method 
has been used with success for PDF modeling of 
crystalline materials [see Egami (1990) for examples] 
and offers the advantage of computational simplicity 
and ease of analysis because local distortions are not 
masked by random ' thermal '  displacements. 

The simulated PDF shown in Fig. 1 was computed 
by counting distances between a single A1 atom and 
all other atoms in an infinite face-centered cubic 
(f.c.c.) lattice. The PDF was then broadened by con- 
volution with a Gaussian. For the instantaneous PDF, 
bonding interactions will introduce correlation in 
vibration between nearest-neighbor atoms, which will 
lead to decreased broadening of the PDF peaks at 
small r. Thus it is necessary to broaden the first peak 
with a slightly narrower Gaussian. For the simulated 
PDF in Fig. 1, the first peak was broadened by 
a Gaussian with o---0.073 A while, for peaks at lar- 
ger r, tr-~ 0.082 ~ was used. 

2. Sources of error in PDF determination 

Experimental errors in PDF determinations may arise 
from a number of sources. Three such sources, termi- 
nation, instrument resolution and counting statistics 
are readily identifiable and will be discussed explicitly 
in the following paragraphs. Another possible source 
of errors is inaccuracies in the experimental correc- 
tions that are applied to diffraction intensities to 
obtain S(Q);  the expected result of such errors is also 
discussed below. 

To measure the effects of these experimental factors 
on PDF determination, ideal total structure factors, 
S(Q),  were computed for crystalline aluminium by 
mapping the computed crystallographic structure fac- 
tors onto a grid with a fixed Q spacing. Since the 
point spacing introduces small errors into the PDF, 
the number of points in the grid was increased (to 
500 points pe r /~ - l )  so that the differences in the PDF 
were very small. 

2.1. Termination errors 

For an infinitely precise computation of a PDF, 
p(r) ,  it is necessary to perform the Fourier-sine trans- 
formation of Q[S(Q)- I ]  in (11) or (14) over all 
values of Q from zero to infinity. However, the Q 
values that can be accessed experimentally are limited 
by instrument design to a range Qmi, <- Q <- Qmax. The 
quality of collimation usually dictates Qmin ; for most 
instruments Qm~n is sufficiently small that the terms 
missing from the transform are of negligible import- 
ance, since they are multiplied by Q. The energy or 
wavelength of the  neutron or X-ray probe limits Q . . . .  

since Qmax = 4"n'(sin 0)/A < 4~'/A where A = he~ E for 
X-rays and A2=h2/(2M, E) for neutrons. The 
omission of terms with Q >  Qmax frequently results 
in spurious oscillations [see Cargill (1975) and Suzuki 
(1986) for discussion]. The termination of the PDF 
computation at Qmax is equivalent to multiplication 
of S(Q) by a step function, so this causes p(r)-po 
to be convoluted with a broadening function, 
sin (QmaxAr)/Ar, the Fourier transform of the step 
function. However, since thermal and zero-point 
motion always broadens the PDF, it is possible to 
choose a minimum value for Qmax such that the addi- 
tional broadening due to termination is negligible 
with respect to the thermal broadening. 

To serve as a quantitative reference for determina- 
tion of the Qmax value needed to guarantee that ter- 
mination effects are small with respect to thermal 
motion, a model computation was performed where 
a Debye-Waller  damping function was applied to the 
ideal structure factor for a f.c.c, structure. The PDF 
was obtained by Fourier transform of the damped 
S(Q) with truncation at selected values of Q. The 
agreement factor between the PDF simulated from 
the ideal crystal structure and convoluted with a 
Gaussian of appropriate width and the PDF with 
truncation was computed using (16). Displayed in 
Fig. 3 are the results for values of the Debye-Waller  
temperature factor, B, of 0.28, 0.39 and 0.92 ~2, cor- 
responding to the estimated vibration amplitudes for 
crystalline aluminium at 0, 100 and 295 K (Interna- 
tional Tables for X-ray Crystallography, 1968). These 
temperature faQtors lead to broadening of the PDF 
with cr -- 0.084, 0.100 and 0.153 ~ ,  respectively. Also 
displayed are results using B values for the estimated 
zero-point vibration for Ni, 0.1 A2, and Cu, 0.14 ~2, 
which correspond to o- values of 0.05 and 0.06 ~ ,  
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Fig. 3. The amount of error introduced into the PDF due to 
termination of  S(Q) at different values of  Qmax with values of  
the Debye-Waller  temperature factor, B, of 0.1, 0.14, 0.28, 0.39 
and 0.92 A2 (filled stars, filled triangles, squares, crosses and 
six-pointed stars, respectively). Agreement is computed over the 
range r = 2 to 20/~ by comparison to an ideal PDF with appropri- 
ate broadening (computed as described in the text). 
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respectively (International Tables for X-ray Crystal- 
lography, 1968). Except at very low temperatures,  
most materials exhibit  thermal  vibration greater than 
that for A1 at 0 K, so terminat ion at 30 A -~ will be 
sufficient for accurate determinat ion of the PDF. 
Amorphous  materials  and quasicrystals tend to have 
much  broader  features in their  PDFs than crystalline 
materials so t runcat ion errors are less severe. 

When h igh-Q data cannot  be collected, many  work- 
ers apply  a damping  funct ion to reduce the intensities 
of  the h igh-Q data. The effect of  such treatment 
improves the P D F  by reducing spurious oscillations, 
but it is well known that the resulting P D F  has 
broadened  features, since damping  is analogous to 
raising the sample  temperature  (Bragg & West, 1930). 
In previous R D F  measurements  of  crystalline 
a lumin ium by Ruppersberg & Seemann (1965) and 
Fessler, Kaplow & Averbach (1966), elevated sample 
temperatures were used to reduce the errors intro- 
duced by termination.  Nei ther  damping  nor use of 
elevated temperatures can substitute for measurement  
of  the actual data at high Q, since the degraded 
resolution due to addi t ional  or s imulated thermal  
motion will often obscure significant structural 
details. Methods  for reducing the errors due to termin- 
ation have been proposed. For example,  Kaplow, 
Strong & Averbach (1965) use an iterative procedure 
to extrapolate h igh-Q data by setting p(r) to zero for 
r << rmin, where rmi n is the m i n i m u m  nearest-neighbor 
distance. However, Aur (1981) found that, while this 
procedure did remove spurious oscillations below 
rmi,, it did not significantly remove the spurious 
oscillations introduced by terminat ion above rmi n. 
There is no substitute for direct measurement  of  S(Q)  
to sufficiently large Q. 

2.2. Instrument resolution 

The inabil i ty of  diffraction instruments to resolve 
all of  the detail in I(Q) leads to a broadening  of 
diffraction max ima  which can be modeled by convol- 
ution by an instrument  response function. While the 
instrument  response funct ion may have complex 
dependence  on Q, it is often modeled  using a 
Gauss ian  convolution function, 

[(2"n')l/Ecr~] -1 exp [-(Q-Qo)E/2cr2q], 

where the response funct ion has constant full width 
at ha l f -max imum o'e(8 In 2) u2. The result from this 
model  is the mult ipl icat ion of  p ( r ) - p 0  by a broad 
envelope function,  

Papparent - -  P0 - - - -  [Pactual -- P0] exp (--~rl 2crO),2, (22) 

the Fourier  t ransform of  the Gauss ian  instrument  
response function. A plot of  the degradat ion of the 
agreement  factor as a funct ion of  increasing instru- 
ment  b roadening  is shown in Fig. 4. 

For some instruments,  a more appropriate  model  
for the ins t rument  response function has a loss of  
resolution proport ional  to the modulus  of the scatter- 
ing vector, Q, rather than constant for all Q. In Fig. 
5, a plot is shown of the error introduced into the 
PDF where a Q-dependent  instrument  response func- 
tion, broadening  with crow-Q (AQ/Q constant),  is 
appl ied to S(Q). Applicat ion of a best-fit Gauss ian  
envelope correction funct ion gave little improvement  
in discrepancies introduced by the convolution,  but 
al lowing the PDF peak width to vary with r, crr = 

L Q  

O 

, . . . . . ,  

~ M ' A •  , I C L i , , L , , , , i , i , , I 

0 0.05 0.1 015 0.2 

aQ, ~-1 

Fig. 4. The change in agreement factor due to a constant-width 
instrument response function obtained by comparison of the 
PDF computed from an ideal S(Q) for polycrystailine Al con- 
voluted by a Gaussian function of constant width, o'o, with the 
PDF computed directly from the model structure. Agreement 
factors are evaluated as defined in the text over the range of 2 
to 20 A. The small deviations of the agreement factor from zero 
for small values of cr o is due to computational limitations. 
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Fig. 5. The change in agreement factor due to a Q-dependent 
instrument response function obtained by comparison of the 
PDF computed from an ideal S(Q) for polycrystalline A1 con- 
voluted with a Gaussian function of width proportional to Q 
(squares) and a PDF computed directly from the model structure. 
Agreement factors are evaluated as defined in the text over the 
range of 2 to 20 A. Also shown is the agreement after correction 
of the model PDF with an r-dependent broadening term 
(asterisks); multiplication by a Gaussian envelope function 
(circles); both corrections together (crosses). 



B. H. TOBY AND T. EGAMI 343 

Oo + ar 2, did give considerably better agreement. Use 
of both the peak width and the envelope corrections 
together gave the best agreement, but this becomes 
noticeable only when the model instrument response 
function is quite poor or r is greater than 20 Zk. 

In general, at very large r values, p(r) is largely 
featureless, so loss of resolution and intensity in the 
PDF at large r provides little impediment to the use 
of instruments with poor resolution for PDF struc- 
tural analysis. This is in contrast to crystallographic 
methods which are often resolution-limited. While it 
is never possible to recover the information lost due 
to instrumental broadening, good agreement between 
the observed and model PDFs over a large range in 
r may still be obtained by incorporation of appropri- 
ate correction terms into the model PDF computation. 
Thus, regions of the PDF that are significantly 
affected by instrument broadening may be used for 
modeling. 

For the SEPD instrument at Argonne National 
Laboratory, instrument resolutions of better than 
0.4% AQ/Q are routinely obtained. Experimentally, 
lack of resolution on this level results in a small 
increase in the widths of PDF peaks with increasing 
r, and a minor damping of the PDF at larger r values. 
The corrections become significant for r greater than 
10 A and either term may be applied alone for satis- 
factory correction of the PDF for r below 20 A. The 
primary effects of the PDF broadening due to the 
instrumental broadening of I (Q)  can be well correc- 
ted, as is demonstrated by the goodness of agreement 
between the observed and model PDF in Fig. 1. The 
model PDF was computed using a Gaussian convol- 
ution where o" is 0.0733 for the first peak and 0.0819 + 
0.000024r 2 for the remainder of the PDF. In addition, 
an envelope correction function, exp [-(0.0262r)2/2] 
was applied to the calculated p(r)-po. 

2.3. Counting statistics 

Counts of discrete events are subject to statistical 
fluctuations that are governed by the number of events 
recorded. The expected or estimated standard devi- 
ation (e.s.d.) for the observation N counts is (N)  1/2. 
This error is directly germane to most types of diffrac- 
tion measurements, since counting of individual 
quanta (neutrons, electrons or photons) is the most 
precise method for measurement of diffraction 
intensities. 

The estimated errors for a set of observations may 
be propagated to estimate the error in a function 
determined from these observables. In general form, 
the e.s.d, for a function f evaluated using a set of 
independent observations, 01, 02,. . . ,  ON, can be 
estimated from the e.s.d, of each of the observations 
using 

0"~ ~ . O'Oj 

(Hamilton, 1964). If S(Q) is treated as a continuous 
function, the e.s.d, for p(r) can be estimated using 

2 ~ 2 (Op(r)~2(OS(Q)~2 
O'p ( r )  = ~ O ' o j \ ~ ]  \---~j ] .  (24) 

Alternatively, the discrete S(Qk) points may be 
treated as independent observables provided that 
each intensity observation is used to determine only 
one S(Qk) value. In this case the e.s.d, for S(Qk) is 
given by 

M (cgS(Qk)) 2 
2 = j~  o .2 (25) Crs(ok) o, \ OOj 

where there are M independent observations of the 
sample, sample container and background intensities 
that are used to determine S(Qk). The computation 
of the e.s.d, for p(r) may then be simplified to 

2 = (27r2r) -2 ~. [O'stok)QkAQk sin Qkr] 2. (26) O'p(r) 
k 

Equations (25) and (26) may be evaluated directly 
for estimation of statistical errors. For example, in 
our neutron time-of-flight analysis we use 

ty2s(Q)=[Cl(Qj)] 2 al a2 
M,(Q) ~'' + M~(Q) cr~ 

q- [ al _ a2 ] 2} 
LMb(Q) o-,,j , (27) 

where the contributions to the statistical error from 
the incident-spectrum corrections, M(Q) ,  are 
assumed to be negligible. The estimated error due to 
counting statistics for the observed aluminium PDF 
is shown in the lower box of Fig. 1. It is noteworthy 
that these low error levels are obtained after only 2 h 
of data collection for a relatively weakly scattering 
material. 

Note that application of a smoothing correction to 
S(Q) would introduce correlation between the data 
points, invalidating the simplifications used above. 
Moreover, smoothing by averaging or filtering can 
remove oscillations from S(Q) that are believed to 
be spurious, but such ' improvements '  are at best 
cosmetic and do not reduce errors in the PDF. Use 
of a Fourier filter to remove high-frequency com- 
ponents will have little effect on the PDF except at 
very large r, where the PDF is essentially flat. Moving- 
spline smoothing functions and related methods com- 
pute a moving average of the data points, which yields 
approximately the same results as would be obtained 
by reducing the number of S(Q) data points by direct 
averaging. Since smoothing introduces no new 
observations, it cannot reduce the estimated errors. 

2.4. Optimum data-collection strategy 

In laboratory practice, a limited amount of time 
may be devoted to measurement of diffraction 
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intensities for a given sample and the optimum data- 
collection method will apportion the time for each 
measurement so that the most precise PDF will be 
obtained for the total time available. We define a 
scan-rate function, R(Qk), using 

Nobs(Qk) = R(Qk)AQkI(Qk) 
= R(Qk)aQk(b)2S(Qk), (28) 

where Nobs(Qk) is the total number of counts for the 
kth point, R(Qk)ZlQk is proportional to the counting 
time or spectral brightness. If we ignore the contribu- 
tions to the statistical error from experimental correc- 
tions including background subtraction, from (25), 
the e.s.d, for S(Q) is 

O'scok)z =S(Q)[R(Qk)AQk(b)Z]-I . (29) 

Use of (26) yields 

2 = (2.rr 2r)-2 • [S(Qk)/R(Q)(b)2]Q2k O'p(r) 
k 

× sin 2 Qkr AQk, (30) 

or, equivalently, with S(Q) and R(Q) expressed as 
continuous functions, 

2 = (2rr2r)-2 O'P(r) ~ [ Q2/ R( Q)(b)2]S( Q) 

x(s in  z Qr) dQ. (31) 

Note that ((sinZQr))o ~-½, where ((. . .))Q indicates an 
average over a wide range in Q, so it is possible to 
approximate (31) as 

2____ I o-o~, ~ (8~4r~) -' S (O)02  dQ. (32) 
R(Q)(b) 2 

Thus, it can be seen that the e.s.d, for p(r) falls as 1/r. 
Equation (32) can then be used to determine the 

optimum scan rate, R(Q), which yields the smallest 
e.s.d.s for p(r) for a given total data-collection period. 
Imposition of a normalization condition for the total 
scan time, J R(Q) dQ constant, yields 

2 ___ ( 8 7 r 4 r 2 ) - i  [ R(Q) dQ O'p(r) 

×~[S(Q)Q2/R(Q)(b)2]dQ. (33) 

For example, if R(Q) is invariant with Q, the e.s.d. 
for p (r) is 

2 ~ ( 8 , n . 4 r 2 ) - l l  d Q  I [ S ( Q ) Q 2 / ( b ) 2 ] d Q .  (34) O'p(r) 

The optimum e.s.d, will be obtained when 

R(Q)ocQ[S(Q)]'/2/(b)=Q[I(Q)]'/2/(b) 2, (35) 

because 

2 (87r4r2)-'(~ {Q[S(Q)]'/2/(b)}dQ) 2. (36 )  O'p(r) "~ 

In contrast, the practice of making intensity measure- 
ments to a constant gobs value, so that all measure- 
ments are made to the same relative precision, will 
result in larger than optimal e.s.d.s. In this case, 

R(O)ocl/I(Q) and 

2 (87r4r~) - '  S dQ/[S(Q)(b>2]S [QS(Q)] 2 dQ, O'p( r) 

(37) 

which yields larger e.s.d.s than (36). 
During data collection, the e.s.d, for the PDF may 

be estimated quickly from the following procedure. 
With the approximation ((S(Q)))Q = 1 and a computa- 
tion of the total number of counts collected in each 
region of Q, Ntot(Qi), the e.s.d, may then be estimated 
using 

2 ~ (8 7T4r2)- 1 o-o~r~-- Y~[Q~/Ntot(Q,)][AQ,] 2. (38) 

The averaging should be performed in sufficiently 
large regions, for example of 1 A - ' ,  so that the struc- 
ture in S(Q) is averaged out. 

2.5. Experimental corrections 
As previously discussed, corrections for absorp- 

tion, multiple scattering, inelastic or Placzek scatter- 
ing, sample container and background scattering must 
be added to or subtracted from the observed intensity 
measurements to determine S(Q). Any inaccuracies 
in these corrections will introduce systematic errors 
to the computation of p(r). However, these experi- 
mental effects are broad smoothly varying functions 
of Q. Thus any systematic errors due to these correc- 
tions (the deviations between the applied corrections 
and the true effects) can also be expected to be broad 
smoothly varying functions of Q. Adding such a 
slowly varying error function to S(Q) will add to p(r) 
an error function that decreases in magnitude as r 
increases. These spurious oscillations in p(r) are often 
readily identifiable because they have a frequency in 
r typically much greater than structural details. 

The observed and computed PDFs for aluminium 
shown in Fig. 1, while in very good agreement, still 
have significantly larger deviations than would be 
expected from counting statistics and termination 
errors alone. The agreement factors computed using 
(16) for these PDFs are 0.156 and 0.045 over the 
ranges 2-20 and 20-40 ]k, respectively. In contrast, 
the statistically expected agreement factors for the 
same ranges are 0.052 and 0.012, respectively. The 
discrepancies between the observed and expected 
agreement factors indicate systematic errors intro- 
duced by inaccuracies in the data-analysis procedures 
and uncorrected systematic errors in the experimental 
measurements. A PDF determination of a standard 
material such as this provides a direct measurement 
of the level of systematic error in the determination. 

3. Discussion 

Several points concerning PDF analysis have been 
demonstrated by these investigations. Most sig- 
nificantly, it is possible to make both accurate and 
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precise determinat ions  of  the PDF with modern  
neutron and synchrotron instrumentat ion,  provided 
a diffraction probe with sufficiently high energy is 
used so that terminat ion errors are minimized.  In 
most cases, ins t rumental  b roadening  does not result 
in a significant loss of  informat ion  in the PDF. When 
poor resolution does produce a noticeable degrada- 
tion of  the PDF,  good agreement  with a model  PDF 
may still be obtained by incorporat ion of correction 
terms into the model  P D F  computat ion.  

Statistical error can be significant in PDF analysis,  
as is the case for all diffraction measurements .  It has 
been demonstra ted  here how one may estimate the 
magni tude  of  statistical error in the PDF. As is the 
accepted practice for crystal lographic measurements ,  
all PDF determinat ions  should include a calculat ion 
of the est imated statistical error, which may be 
obtained from propagat ion of the est imated errors 
for the intensity measurements  to S(Q)  and applica- 
tion of (26). 

Systematic errors in t roduced in the collection and 
processing of  diffraction data can limit the quali ty of 
the results. As discussed previously,  corrections must 
be appl ied for ins t rument  calibration,  mult iple  scat- 
tering, inelastic scattering, absorpt ion and back- 
ground. Standard practice for PDF determinat ion 
should also include per iodic  determinat ion of a PDF 
for a material  with a well known structure to quant i fy  
the level of  systematic errors. 

As ment ioned  previously, the deviations between 
the observed and computed  PDFs of a lumin ium 
shown in Fig. 1 are larger than that which can be 
attributed to statistical and terminat ion errors. These 
systematic errors are attributed to inadequacies  in the 
data processing. The approximat ions  used in such 
processing, for calculat ion of  experimental  correc- 
tions such as the Placzek and multiple-scattering cor- 
rections, should be re-examined now that terminat ion 
and statistical errors need not limit the accuracy of 
PDF analysis and since larger-scale computat ions  are 
more accessible. Reduct ion or better characterization 
of  background and container  scattering may also 
significantly improve P D F  computat ions.  

Significantly, for certain experiments,  the contribu- 
tion of  systematic errors to the PDF can be minimized.  
For example,  when compar ing  PDFs for a single 
sample obtained from diffraction measurements  
under  nearly identical  conditions,  while a single 
exper imental  parameter  (for example  temperature)  is 
changed,  the most important  error source for differen- 
ces between the observed PDFs will be statistical in 
nature. This is likewise true for the case of  i somorphic  
substitution. 

In conclusion,  PDF analysis  can be improved by 
development  of  diffraction instruments with lower 
levels of  background and better statistics at high Q, 
even at the expense of decreased resolution. Improved 
data-collection strategies can further minimize  statis- 

tical error in the PDF. It is a l ready possible to obtain 
accurate PDFs,  nearly free from terminat ion errors, 
as demonst ra ted  by the good agreement  shown with 
a s tandard material ,  where the discrepancies  are 
reduced to the same order of  magni tude  as the statis- 
tical error. 

The technique has a l ready demonstra ted a unique 
value for analysis  of  local order in crystall ine 
materials,  in addi t ion to the tradit ional  appl icat ions  
to amorphous  materials.  Improvements  to data- 
processing techniques are needed to take best advan- 
tage of the high-quali ty diffraction data that can be 
measured  with spal lat ion and synchrotron sources. 
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Abstract Introduction 

Methods are described for exploiting the symmetry of 
uniaxial space groups containing rotation axes of order 
three and higher to improve the efficiency of computa- 
tion of Fourier transforms. Mapping a symmetrical two- 
dimensional section into four dimensions enables the se- 
lection of non-contiguous asymmetric units over which 
fast Fourier transforms can be performed that reduce the 
computation time by a factor of approximately the order 
of the rotation axis. The application of the procedure to 
plane group p3 and its extension to p4 and p6 are de- 
scribed. 
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Diffraction intensities and atomic distributions in crystals 
are related to one another by Fourier transforms, which 
therefore play a major role in structural crystallography. 
Because of this a large fraction of the work on computa- 
tional methods, throughout the history of the application 
of diffraction techniques to crystallography, has been di- 
rected toward improving the efficiency of computation of 
Fourier transforms. A major advance came with the de- 
velopment by Cooley & Tukey (1965; also Gentleman & 
Sande, 1966) of a procedure that has become known as the 
fast Fourier transform, or FFT. Whereas previously used 
methods had required numbers of operations proportional 
to the square of the number of Fourier coefficients, N, the 
number of operations required by the FFF procedure is 
proportional approximately to N log N, which, for mod- 
erately large values of N, increases only slightly more 
rapidly than linearly with increasing N. 

Further savings in both time and computer capacity 
can be achieved if a FFT routine can make use of space- 
group symmetry to avoid storing redundant data and 
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